

Differentiable physics analyses

Alexander Held¹, Gordon Watts²

¹ New York University² University of Washington

Snowmass 2021 Computational Frontier Workshop Aug 11, 2020

Analysis optimization

- Analysis design includes optimization for sensitivity
 - ▶ Typically done by manually comparing limited set of possible analysis decisions
 - Grid scans of selected parameters
 - Example: jet p_T cut: 25 or 30 GeV, which muon reconstruction algorithm to use
 - Generally not possible to simultaneously optimize all free parameters in analysis design
 - Computationally prohibitive

- Lack of end-to-end optimization in HEP limits sensitivity and physics reach.
- Manual optimization is inefficient.

Differentiable programming

Differentiable programming:

- Writing programs that can be differentiated throughout, especially using automatic differentiation
- ▶ Enables end-to-end optimization

• In HEP:

- ▶ Want to be able to calculate gradients wrt. analysis decisions
 - e.g.: $\partial(\Delta\mu)/\partial\phi$ where $\Delta\mu$: uncertainty of parameter of interest, ϕ : any parameter in the analysis
- ▶ Requires (auto-) differentiable software
- ▶ Sensitivity optimization becomes minimization problem: use gradient descent methods
 - Can optimize millions of parameters at once
 - Benefit from experiences in machine learning

Challenges and the future

- Challenge: write all relevant code in an auto-differentiable way
 - ▶ Need to replace non-differentiable parts like histograms with differentiable alternatives
- Challenge: interfacing different simulation tools and libraries
 - ▶ Ensure gradients can be passed through
- Challenge: picking optimization objective and constraints
 - ▶ Best limit / lowest uncertainty may not be desirable when they come with unphysical constraints in fits
- Benefit from developments outside of HEP (research & industry)
 - ▶ Differentiable drop-in replacements for familiar libraries (example: numpy→JAX)
 - ▶ Differentiable alternatives to common algorithms (example: sorting/ranking https://arxiv.org/abs/2002.08871)

Related activities and resources

- Related activities
 - ▶ HEP Software Foundation group on differential programming
 - ▶ <u>IRIS-HEP analysis challenge</u> for end-to-end optimized analysis

- Further resources
 - ▶ <u>Talk at PyHEP about neos</u>, which uses <u>pyhf</u> and <u>JAX</u> for differentiable inference
 - ▶ <u>Differentiable Tracking in ACTS</u>
 - ▶ INFERNO method: https://arxiv.org/abs/1806.04743

